Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Theriogenology ; 223: 74-88, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38692037

ABSTRACT

Mammalian embryos produced in vitro have poor embryo quality and low developmental ability compared with in vivo embryos. The main manifestations are the low number of blastocysts, the low ratio of the number of inner cell mass cells to the number of trophoblastic cells, and the high apoptosis rate of blastocysts, resulting in low embryo implantation rate. Therefore, optimizing in vitro culture conditions has become a key technology to im-prove the quality of preimplantation embryos. Oviduct Epithelial cells exosomes (OEVs) can be absorbed and internalized by embryos to improve the blastocyst rate and blastocyst quality of embryos in vitro. As a special nuclear structure, Paraspeckles are involved in the fate determination of mammalian early embryonic mammalian cells. However, the regulation of embryonic cell differentiation by OEVs remains unknown. We aimed to investigate the effects of OEVs on paraspeckle formation and cell fate determination in yak in vitro fertilization (IVF) of em-bryos. To simulate the in vivo oviduct environment after ovulation, we used follicular fluid exosomes (FEVs) to stimulate yak oviduct epithelial cells and collect OEVs. OEVs were added to the yak IVF embryo culture system. Paraspeckle formation, cell differentiation, and blastocyst quality in yak embryos were determined. Our results show that, development of yak embryos is unique compared to other bovine species, and OEVs can be used as a supplement to the in vitro culture system of yak embryos to improve embryonic development and blas-tocyst quality. And also Paraspeckles/CARM1 mediated the regulation of OEVs on cell differentiation during in vitro yak embryo production. These results provide new insights into the study of yak embryonic development and the role of OEVs in embryonic development.

2.
PLoS One ; 19(4): e0302292, 2024.
Article in English | MEDLINE | ID: mdl-38626181

ABSTRACT

Proteins containing domain of unknown function (DUF) are prevalent in eukaryotic genome. The DUF1216 proteins possess a conserved DUF1216 domain resembling to the mediator protein of Arabidopsis RNA polymerase II transcriptional subunit-like protein. The DUF1216 family are specifically existed in Brassicaceae, however, no comprehensive evolutionary analysis of DUF1216 genes have been performed. We performed a first comprehensive genome-wide analysis of DUF1216 proteins in Brassicaceae. Totally 284 DUF1216 genes were identified in 27 Brassicaceae species and classified into four subfamilies on the basis of phylogenetic analysis. The analysis of gene structure and conserved motifs revealed that DUF1216 genes within the same subfamily exhibited similar intron/exon patterns and motif composition. The majority members of DUF1216 genes contain a signal peptide in the N-terminal, and the ninth position of the signal peptide in most DUF1216 is cysteine. Synteny analysis revealed that segmental duplication is a major mechanism for expanding of DUF1216 genes in Brassica oleracea, Brassica juncea, Brassica napus, Lepidium meyneii, and Brassica carinata, while in Arabidopsis thaliana and Capsella rubella, tandem duplication plays a major role in the expansion of the DUF1216 gene family. The analysis of Ka/Ks (non-synonymous substitution rate/synonymous substitution rate) ratios for DUF1216 paralogous indicated that most of gene pairs underwent purifying selection. DUF1216 genes displayed a specifically high expression in reproductive tissues in most Brassicaceae species, while its expression in Brassica juncea was specifically high in root. Our studies offered new insights into the phylogenetic relationships, gene structures and expressional patterns of DUF1216 members in Brassicaceae, which provides a foundation for future functional analysis.


Subject(s)
Arabidopsis , Brassicaceae , Brassicaceae/genetics , Gene Duplication , Phylogeny , Evolution, Molecular , Genome, Plant , Arabidopsis/genetics , Plant Proteins/genetics , Plant Proteins/chemistry , Mustard Plant/genetics , Protein Sorting Signals/genetics , Gene Expression Regulation, Plant
3.
Genes (Basel) ; 15(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38674350

ABSTRACT

Seed dormancy is a life adaptation trait exhibited by plants in response to environmental changes during their growth and development. The dormancy of commercial seeds is the key factor affecting seed quality. Eggplant seed dormancy is controlled by quantitative trait loci (QTLs), but reliable QTLs related to eggplant dormancy are still lacking. In this study, F2 populations obtained through the hybridization of paternally inbred lines with significant differences in dormancy were used to detect regulatory sites of dormancy in eggplant seeds. Three QTLs (dr1.1, dr2.1, and dr6.1) related to seed dormancy were detected on three chromosomes of eggplant using the QTL-Seq technique. By combining nonsynonymous sites within the candidate regions and gene functional annotation analysis, nine candidate genes were selected from three QTL candidate regions. According to the germination results on the eighth day, the male parent was not dormant, but the female parent was dormant. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of nine candidate genes, and the Smechr0201082 gene showed roughly the same trend as that in the phenotypic data. We proposed Smechr0201082 as the potential key gene involved in regulating the dormancy of eggplant seeds. The results of seed experiments with different concentrations of gibberellin A3 (GA3) showed that, within a certain range, the higher the gibberellin concentration, the earlier the emergence and the higher the germination rate. However, higher concentrations of GA3 may have potential effects on eggplant seedlings. We suggest the use of GA3 at a concentration of 200-250 mg·L-1 to treat dormant seeds. This study provides a foundation for the further exploration of genes related to the regulation of seed dormancy and the elucidation of the molecular mechanism of eggplant seed dormancy and germination.


Subject(s)
Germination , Plant Dormancy , Quantitative Trait Loci , Seeds , Solanum melongena , Solanum melongena/genetics , Solanum melongena/growth & development , Quantitative Trait Loci/genetics , Plant Dormancy/genetics , Seeds/genetics , Seeds/growth & development , Germination/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Chromosome Mapping , Phenotype , Genes, Plant/genetics
4.
Curr Med Chem ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38551048

ABSTRACT

AIMS: To facilitate drug discovery and development for the treatment of osteoporosis. BACKGROUND: With global aging, osteoporosis has become a common problem threatening the health of the elderly. It is of important clinical value to explore new targets for drug intervention and develop promising drugs for the treatment of osteoporosis. OBJECTIVE: To understand the major molecules that mediate the communication between the cell populations of bone marrow-derived mesenchymal stem cells (BM-MSCs) in osteoporosis and osteoarthritis patients and identify potential reusable drugs for the treatment of osteoporosis. METHODS: Single-cell RNA sequencing (scRNA-seq) data of BM-MSCs in GSE147287 dataset were classified using the Seurat package. CellChat was devoted to analyzing the ligand-receptor pairs (LR pairs) contributing to the communication between BM-MSCs subsets. The LR pairs that were differentially expressed between osteoporosis samples and control samples and significantly correlated with immune score were screened in the GSE35959 dataset, and the differentially expressed gene in both GSE35959 and GSE13850 data sets were identified as targets from a single ligand or receptor. The therapeutic drugs for osteoporosis were screened by network proximity method, and the top-ranked drugs were selected for molecular docking and molecular dynamics simulation with the target targets. RESULTS: Twelve subsets of BM-MSCs were identified, of which CD45-BM-MSCS_4, CD45-BM- MSCS_5, and CD45+ BM-MSCs_5 subsets showed significantly different distributions between osteoporosis samples and osteoarthritis samples. Six LR pairs were identified in the bidirectional communication between these three BM-MSCs subsets and other BM-MSCs subsets. Among them, MIF-CD74 and ITGB2-ICAM2 were significantly correlated with the immune score. CD74 was identified as the target, and a total of 48 drugs targeting CD47 protein were identified. Among them, DB01940 had the lowest free energy binding score with CD74 protein and the binding state was very stable. CONCLUSION: This study provided a new network-based framework for drug reuse and identified initial insights into therapeutic agents targeting CD74 in osteoporosis, which may be meaningful for promoting the development of osteoporosis treatment.

5.
Front Vet Sci ; 11: 1366759, 2024.
Article in English | MEDLINE | ID: mdl-38500606

ABSTRACT

Granulosa cells (GCs) are essential for follicular development, and long non-coding RNAs (LncRNAs) are known to support the maintenance of this process and hormone synthesis in mammals. Nevertheless, the regulatory roles of these lncRNAs within sheep follicular GCs remain largely unexplored. This study delved into the influence of a Loc105611671, on the proliferation and steroid hormone synthesis of sheep ovarian GCs and the associated target genes in vitro. Cell Counting Kit-8 (CCK-8) gain-of-function experiments indicated that overexpression of Loc105611671 significantly boosted GCs proliferation, along with estrogen (E2) and progesterone (P4) levels. Further mechanistic scrutiny revealed that Loc105611671 is primarily localized within the cytoplasm of ovarian granulosa cells and engages in molecular interplay with CDC42. This interaction results in the upregulation of CDC42 protein expression. Moreover, it was discerned that increased CDC42 levels contribute to augmented proliferation of follicular granulosa cells and the secretion of E2 and P4. Experiments involving co-transfection elucidated that the concurrent overexpression of CDC42 and Loc105611671 acted synergistically to potentiate these effects. These findings provide insights into the molecular underpinnings of fecundity in ovine species and may inform future strategies for enhancing reproductive outcomes.

6.
Plants (Basel) ; 13(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38337907

ABSTRACT

An appropriate water supply strategy is imperative for obtaining tomatoes of a high yield and quality; the lack of one has caused resource wastage and quality deterioration. To determine the suitable irrigation amount and simulate daily transpiration under these optimal irrigation conditions, a two-year greenhouse cultivation experiment was conducted over 2022-2023. Commencing at anthesis, three distinct irrigation gradients were triggered and designated as irrigation controls with the lower limits set at 80% (T1), 70% (T2), and 60% (T3) of the substrate water-holding capacity. We determined the optimal irrigation amount by ranking the treatments using the TOPSIS method, balancing the tomato yield and quality. A segmented daily transpiration model under optimal irrigation conditions driven by crop and environmental factors was established using the Marquardt method and data from 2022, and the model was validated using data from 2023. The results indicated that T2 was the optimal irrigation amount, with the water use efficiency increased by 18.0%, but with a 10.9% decrease in yield, while the quality indices improved significantly. The R2 values of the segmented model in the flowering and fruit-setting stage and the picking stage were 0.92 and 0.86, respectively, which could provide support for optimized water management for tomato planting in greenhouse substrate cultivation.

7.
Front Plant Sci ; 15: 1329890, 2024.
Article in English | MEDLINE | ID: mdl-38371408

ABSTRACT

Radish (Raphanus sativus L.) is a vegetable crop with economic value and ecological significance in the genus Radish, family Brassicaceae. In recent years, developed countries have attached great importance to the collection and conservation of radish germplasm resources and their research and utilization, but the lack of population genetic information and molecular markers has hindered the development of the genetic breeding of radish. In this study, we integrated the radish genomic data published in databases for the development of single-nucleotide polymorphism (SNP) markers, and obtained a dataset of 308 high-quality SNPs under strict selection criteria. With the support of Kompetitive Allele-Specific PCR (KASP) technology, we screened a set of 32 candidate core SNP marker sets to analyse the genetic diversity of the collected 356 radish varieties. The results showed that the mean values of polymorphism information content (PIC), minor allele frequency (MAF), gene diversity and heterozygosity of the 32 candidate core SNP markers were 0.32, 0.30, 0.40 and 0.25, respectively. Population structural analysis, principal component analysis and genetic evolutionary tree analysis indicated that the 356 radish materials were best classified into two taxa, and that the two taxa of the material were closely genetically exchanged. Finally, on the basis of 32 candidate core SNP markers we calculated 15 core markers using a computer algorithm to construct a fingerprint map of 356 radish varieties. Furthermore, we constructed a core germplasm population consisting of 71 radish materials using 32 candidate core markers. In this study, we developed SNP markers for radish cultivar identification and genetic diversity analysis, and constructed DNA fingerprints, providing a basis for the identification of radish germplasm resources and molecular marker-assisted breeding as well as genetic research.

8.
Environ Res ; 247: 118221, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38246300

ABSTRACT

As one of the endocrine-disrupting chemicals (EDCs), dibutyl phthalate (DBP) has been extensively used in industry. DBP has been shown to cause damage to Leydig cells, yet its underlying mechanism remains elusive. In this study, we show that DBP induces ferroptosis of mouse Leydig cells via upregulating the expression of Sp2, a transcription factor. Also, Sp2 is identified to promote the transcription of Vdac2 gene by binding to its promoter and subsequently involved in DBP-induced ferroptosis of Leydig cells. In addition, DBP is proved to induce ferroptosis via inducing oxidative stress, while inhibition of oxidative stress by melatonin alleviates DBP-induced ferroptosis and upregulation of Sp2 and VDAC2. Taken together, our findings demonstrate that melatonin can alleviate DBP-induced ferroptosis of mouse Leydig cells via inhibiting oxidative stress-triggered Sp2/VDAC2 signals.


Subject(s)
Ferroptosis , Melatonin , Mice , Male , Animals , Dibutyl Phthalate/toxicity , Leydig Cells/metabolism , Testis/metabolism , Melatonin/pharmacology , Melatonin/metabolism
9.
BMC Vet Res ; 20(1): 4, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172906

ABSTRACT

INTRODUCTION: This study aimed to investigate the microbial characteristics of yak uteri collected using intrauterine cotton swabs (CS) during different reproductive stages and the correlation of these microbial characteristics with reproductive status. METHODS: We used a macrogenomic approach to analyze the functional aspects of different microorganisms in samples collected during the pre-estrus, estrus, late estrus, and diestrus stages. RESULTS: The results revealed the presence of 1293 microbial genera and 3401 microbial species in the uteri of yaks at different reproductive stages. The dominant bacterial species varied across the different periods, with Micrococcus and Proteus being dominant during pre-estrus; Pseudomonas, Clostridium, Flavobacterium, Bacillus, and Staphylococcus during estrus; Acinetobacter, Bacillus and Proteus during late estrus; and Pseudomonas, Escherichia coli, and Proteus during diestrus. DISCUSSION: The primary functions of these bacteria are enriched in various metabolic pathways, including carbohydrate and amino acid metabolism, intracellular transport and secretion, post-translational protein modification, and drug resistance. These findings suggest that the microbial diversity in the uterus of yaks plays a crucial role in reproductive regulation and can help prevent reproductive tract-related diseases.


Subject(s)
Estrus , Uterus , Female , Cattle , Animals , Uterus/metabolism , Reproduction
10.
Ecotoxicol Environ Saf ; 270: 115882, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38171099

ABSTRACT

As an extensively employed plasticizer in industrial applications, di-2-ethylhexyl phthalate (DEHP) can induce apoptosis of mouse Leydig cells, yet the precise mechanism remains elusive. In the current study, we identified that DEHP could specially induced apoptosis in the Leydig cells of the testis tissue, accompanied with the upregulation of apoptosis-related protein in the TGF-ß signaling pathway (ARTS) in the cells. Overexpression of ARTS significantly induced apoptosis of TM3 cells, while knockdown of ARTS inhibited apoptosis. Furthermore, DEHP-induced apoptosis of TM3 cells could be alleviated by knockdown of ARTS, which indicated that ARTS was involved in DEHP-induced apoptosis of mouse Leydig cells. Bioinformation assay predicts that there are four potential p53-responsive elements (p53-REs) located at - 6060, - 5726, - 5631 and - 5554 before the transcription start site of ARTS gene, implying that gene transcription of ARTS could be regulated by p53. Interestingly, DEHP was shown to specifically upregulate the expression of p53 in the Leydig cells of the testis tissue and TM3 cells. Consistently, p53 was proved to bind to the RE4 site of the ARTS gene promoter and transcriptionally activated the promoter-driven expression of the luciferase reporter gene. Overexpression of p53 could induce apoptosis of TM3 cells; while knockdown of p53 could not only rescue DEHP-induced apoptosis of the cells, but also inhibit DEHP-caused upregulation of ARTS. Meanwhile, we showed that oxidative stress could induce apoptosis of TM3 cells, accompanied with the increased protein levels of p53 and ARTS; while inhibition of oxidative stress dramatically alleviated DEHP-induced apoptosis and the up-regulation of p53 and ARTS. Taken together, these results indicated that DEHP-induced oxidative stress activates the p53-ARTS cascade to promote apoptosis of mouse Leydig cells.


Subject(s)
Diethylhexyl Phthalate , Leydig Cells , Phthalic Acids , Mice , Animals , Male , Leydig Cells/metabolism , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Apoptosis , Testis/metabolism
11.
Mol Neurobiol ; 61(3): 1726-1736, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37775718

ABSTRACT

The deubiquitylase OTU domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) has been implicated in the pathogenesis of various human diseases. However, the molecular mechanism by which OTUB1 participates in the pathogenesis of intracerebral hemorrhage (ICH) remains elusive. In the present study, we established an autologous whole blood fusion-induced ICH model in C57BL/6 J mice. We showed that the upregulation of OTUB1 contributes to the attenuation of Nuclear factor kappa B (NF-κB) and its downstream apoptotic signaling after ICH. OTUB1 directly associates with NF-κB precursors p105 and p100 after ICH, leading to attenuated polyubiquitylation of p105 and p100. Moreover, we revealed that NF-κB signaling was modestly activated both in ICH tissues and hemin-exposed HT-22 neuronal cells, accompanied with the activation of NF-κB downstream pro-apoptotic signaling. Notably, overexpression of OTUB1 strongly inhibited hemin-induced NF-κB activation, whereas interference of OTUB1 led to the opposite effect. Finally, we revealed that lentiviral transduction of OTUB1 markedly ameliorated hemin-induced apoptotic signaling and HT-22 neuronal death. Collectively, these findings suggest that the upregulation of OTUB1 serves as a neuroprotective mechanism in antagonizing neuroinflammation-induced NF-κB signaling and neuronal death, shed new light on manipulating intracellular deubiquitylating pathways as novel interventive approaches against ICH-induced secondary neuronal damage and death.


Subject(s)
Hemin , NF-kappa B , Animals , Humans , Mice , Cerebral Hemorrhage/pathology , Hemin/pharmacology , Mice, Inbred C57BL , NF-kappa B/metabolism , Signal Transduction
12.
J Steroid Biochem Mol Biol ; 238: 106449, 2024 04.
Article in English | MEDLINE | ID: mdl-38143009

ABSTRACT

As a regulatory protein that upregulates transcription in response to various stresses, cold-induced RNA-binding protein (CIRBP) is involved in a variety of physiological pathological processes in cells. However, little is known about the role of CIRBP in regulating autophagy and the synthesis and secretion of ovarian steroid hormones (estradiol E2 and progesterone P4). This study aimed to explore whether the synthetic secretion of ovarian steroid hormones is related to CIRBP-regulated autophagy. We detected the differential expression of CIRBP, LC3, E2 and P4 in YGCs cultured at mild low temperature (32 °C) for 6 and 12 h. CIRBP, LC3, E2 and P4 expression was increased in response to low temperature in YGCs. In order to illustrate that the changes in secretion of E2/P4 and autophagy might be caused by CIRBP induced by low temperature, we overexpressed CIRBP in YGCs cultured in vitro to detect its effects on autophagy and steroid hormone synthesis and secretion. We found that overexpression of CIRBP can induce autophagy of YGCs and enhance the synthesis and secretion of E2 and P4, suggesting that mild hypothermia may activate autophagy by inducing the expression of CIRBP and enhance the synthesis and secretion of E2 and P4. To further explore the relationship between CIRBP regulated autophagy and steroid hormone synthesis and secretion, we verified it by regulating autophagy. The results showed that Inhibition of autophagy significantly reversed CIRBP overexpression-enhanced autophagy and synthetic secretion of E2, P4 in YGCs, while activated autophagy showed similar results to overexpression of CIRBP. In conclusion, our data suggest that autophagy is involved in the synthesis and secretion of YGCs E2 and P4 and is associated with overexpression of CIRBP.


Subject(s)
Granulosa Cells , Progesterone , Animals , Cattle , Female , Progesterone/metabolism , Granulosa Cells/metabolism , Estradiol/metabolism
13.
Ecotoxicol Environ Saf ; 268: 115686, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37976928

ABSTRACT

As one of the most important phthalates, di-isononyl phthalate (DINP) has been widely used as a common plasticizer in the food and personal care products sectors. In our previous study, we found that DINP can induce autophagy of ovarian granulosa cells; while the underlying mechanism is unclear. In the study, we showed that DINP exposure could induce autophagy of ovarian granulosa cells and KGN cells, accompanied with the increase in the mRNA and protein level of DDIT4. Furthermore, overexpression of DDIT4 were shown to induce autophagy of KGN cells; while knockdown of DDIT4 inhibited DINP-induced autophagy, implying that DDIT4 played an important role in DINP-induced autophagy of ovarian granulosa cells. There were three putative binding sites of transcription factor ATF4 in the promoter region of DDIT4 gene, suggesting that DDIT4 might be regulated by ATF4. Herein, we found that overexpression of ATF4 could upregulate the expression of DDIT4 in KGN cells, while knockdown of ATF4 inhibited its expression. Subsequently, ATF4 was identified to bind to the promoter region of DDIT4 gene and promote its transcription. The expression of ATF4 was also increased in the DINP-exposed granulosa cells, and ATF4 overexpression promoted autophagy of KGN cells; whereas knockdown of ATF4 alleviated DINP-induced upregulation of DDIT4 and autophagy of the cells. Taken together, DINP triggered autophagy of ovarian granulosa cells through activating ATF4/DDIT4 signals.


Subject(s)
Gene Expression Regulation , Phthalic Acids , Female , Humans , Phthalic Acids/chemistry , Autophagy/genetics , Granulosa Cells
14.
BMC Genomics ; 24(1): 615, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833670

ABSTRACT

Understanding the microflora inhabiting the reproductive tract is important for a better understanding of female physiology and reproductive health. The endometrial fluid from mice in three reproductive stages (A: Unproductive mice; B: Postovulatory mice; C: Postpartum mice) was extracted for microbial DNA extraction and sequencing. Phenotypic and functional analyses of endometrial microbial enrichment was undertaken using LefSe. The results showed 95 genera and 134 species of microorganisms in the uteri of mice. There were differentially distributed genera, among which Lactobacillus, Enterococcus, and Streptococcus were more abundant in the endometrial fluid of mice in the unproductive group. That of mice in the postovulatory group was colonized with Salmonella enterica and Campylobacter and was mainly enriched in metabolic pathways and steroid biosynthesis. The presence of Chlamydia, Enterococcus, Pseudomonadales, Acinetobacter, and Clostridium in the endometrial fluid of postpartum mice, in addition to the enrichment of the endocrine system and the Apelin and FoxO signaling pathways, resulted in a higher number of pathogenic pathways than in the other two groups. The results showed that the microbial diversity characteristics in the endometrium of mice in different reproductive states differed and that they could be involved in the regulation of animal reproduction through metabolic pathways and steroid biosynthesis, suggesting that reproductive diseases induced by microbial diversity alterations in the regulation of animal reproduction cannot be ignored.


Subject(s)
Endometrium , Microbiota , Female , Animals , Mice , Endometrium/metabolism , Reproduction , Ovulation/genetics , Microbiota/genetics , Steroids
15.
Int J Mol Sci ; 24(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37762090

ABSTRACT

Pak choi is one of the most important leafy vegetables planted in East Asia and provides essential nutrients for the human body. Purple pak choi differs mainly in leaf colour but exhibits distinct nutritional profiles from green pak choi. In this study, we performed metabolic and transcriptomic analyses to uncover the mechanisms underlying the differences in metabolite biosynthesis profiles between the two pak choi varieties. Metabolite profiling revealed significant differences in the levels of metabolites, mainly amino acids and their derivatives and flavonoids. Furthermore, 34 flavonoids significantly differed between green and purple pak choi leaves, and cyanidin and its derivative anthocyanins were abundant in purple pak choi. In addition, we found that the structural genes CHS, DFR, ANS, and UGT75C1, as well as the transcription factor MYB2, play a major role in anthocyanin synthesis. These results provide insight into the molecular mechanisms underlying leaf pigmentation in pak choi and offer a platform for assessing related varieties.


Subject(s)
Anthocyanins , Transcriptome , Humans , Anthocyanins/metabolism , Gene Expression Profiling/methods , Flavonoids , Vegetables/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
16.
Foods ; 12(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37628081

ABSTRACT

Grafting has a significant impact on the botany properties, commercial character, disease resistance, and productivity of eggplants. However, the mechanism of phenotypic modulation on grafted eggplants is rarely reported. In this study, a widely cultivated eggplant (Solanum. melongena cv. 'Zheqie No.10') was selected as the scion and grafted, respectively, onto four rootstocks of TOR (S. torvum), Sa (S. aculeatissimum), SS (S. sisymbriifolium), and Sm64R (S. melongena cv. 'Qiezhen No. 64R') for phenotypic screening. Physiological and biochemical analysis showed the rootstock Sm64R could improve the fruit quality with the increasing of fruit size, yield, and the contents of total soluble solid, phenolic acid, total amino acid, total sugar, and vitamin C. To further investigate the improvement of fruit quality on Sm64R, a transcriptome and a metabolome between the Sm64R-grafted eggplant and self-grafted eggplant were performed. Significant differences in metabolites, such as phenolic acids, lipids, nucleotides and derivatives, alkaloids, terpenoids, and amino acids, were observed. Differential metabolites and differentially expressed genes were found to be abundant in three core pathways of nutritional qualities, including biosynthesis of phenylpropanoids, phospholipids, and nucleotide metabolism. Thus, this study may provide a novel insight into the effects of grafting on the fruit quality in eggplant.

17.
Animals (Basel) ; 13(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37443883

ABSTRACT

The aim of this study was to investigate protein regulation at different time points during the in vitro maturation of yak oocytes. Yak oocytes at GV, MI, and MII stages were collected during in vitro maturation, and differential proteomics sequencing was performed using iTRAQ technology. GO functional classification indicated that the differential proteins were closely associated with biological processes such as "metabolic processes", and molecular events such as "binding" molecular-function-related categories were active. KOG analysis showed that energy-metabolism-related activities were vigorous during oocyte development from the GV phase to MI phase, and genetic material preparation activities were more active when oocytes developed from the MI stage to MII stage. KEGG pathway analysis showed that the PPAR metabolic pathway, Hippo signaling pathway, and ECM-receptor interaction and metabolic pathway were enriched from the GV to the MI stages. The PI3K-Akt, TGF-ß, and phagosome pathways were enriched from the MI stage to the MII stage. These results indicate that transient dynamic changes occurred in the proteome during the maturation of yak oocytes, and the physiological functions mediated by these were also different. The accurate identification of the differential proteins in the three stages of GV, MI, and MII was helpful in further analyzing the molecular regulatory mechanism of yak oocyte maturation.

18.
Heliyon ; 9(6): e17198, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37484217

ABSTRACT

A fish bone penetrating the digestive tract is a common emergency, and its removal often requires endoscopy. We report herein a case in which a fish bone punctured the throat; its front end was close to the common carotid artery, but its back end could not be visualized. Subsequently, we compared the pharyngeal CT and carotid CTA of the patient and found that the fishbone had shifted. So we considered that the end of the fish bone could be rediscovered and successfully removed by a video laryngoscope. Finally, with the patient under deep sedation with maintained spontaneous breathing, the fish bone was removed using video laryngoscopy. This case highlights the importance of rechecking CT scans and the use of laryngoscopy when determining the location of a shifted foreign body at different times and when selecting the removal method.

19.
Cell Signal ; 107: 110680, 2023 07.
Article in English | MEDLINE | ID: mdl-37086956

ABSTRACT

Apoptosis and autophagy in granulosa cells (GCs) are highly related to follicular development and atresia. It has also been reported that they are related to LncRNA MEG3, miR-23a and apoptosis signal-regulating kinase 1 (ASK-1). However, their relationship to follicular development and the extent to which follicle stimulating hormone (FSH) or luteinizing hormone (LH) can regulate this process remain unknown. Here, we found that ASK1 and JNK were expressed in the GCs of gonadotropin-dependent follicles, and those levels were significantly higher (p < 0.05) in yak Tertiary follicles compared to that of Secondary follicles and Graafian follicles. Then, the effect of LncRNA MEG3 / miR-23a on apoptosis and autophagy via ASK1/JNK (c-Jun N-terminal kinase) in yak GCs was studied. Overexpressing LncRNA MEG3 reduced miR-23a levels and p-967 protein expression, but enhanced ASK1 and JNK mRNA levels as well as t-ASK1, p-845, t-JNK, and p-JNK proteins levels. And Up-regulation of LncRNA MEG3 promoted apoptosis while attenuating autophagy. The targeting relationship between miR-23a and the binding sites of LncRNA MEG3 and ASK1 was also confirmed with the dual luciferase reporter assay. And, the relationship between LncRNA MEG3 and miR-23a was observed as a negative feedback regulation, and changes in LncRNA MEG3 and miR-23a levels can alter the expression of ASK1/JNK axis in yaks GCs. In addition, FSH (10 µg/mL) or LH (100 µg/mL) ability to reverse the effects of LncRNA MEG3 on miR-23a levels and ASK1/JNK axis-mediated apoptosis and autophagy was verified in yak GCs. This is significantly beneficial for decreasing abnormal follicular atresia for yaks tertiary follicles.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Animals , Female , Cattle , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MAP Kinase Kinase Kinase 5/genetics , Follicular Atresia , Apoptosis/genetics , Granulosa Cells/metabolism , Autophagy/genetics , Follicle Stimulating Hormone
20.
J Cell Physiol ; 238(5): 1020-1035, 2023 05.
Article in English | MEDLINE | ID: mdl-37013674

ABSTRACT

After mammalian ovulation, oocytes enter the oviduct, causing oocyte and oviduct changes. Some studies have shown that follicular fluid exosomes (FEVs) play an important role in this regulatory process, but the specific mechanism is remains unclear. Here, we investigate the effect of FEVs on autophagy and on the synthesis and secretion of oviductal glycoprotein 1 (OVGP1) in yak oviduct epithelial cells (OECs). We added FEVs to yak OECs and collected samples at intervals. The effect of autophagy on OVGP1 synthesis and secretion was detected by manipulating the level of autophagy in OECs. The results showed that autophagy gradually increased as early as 6 h after exosome intake level increased, and the increase was most obvious 24 h after. At that time, the synthesis and secretion of OVGP1 also reached its highest levels. When the autophagy level of OECs is changed through the PI3K/AKT/mTOR pathway, OVGP1 synthesis and secretion levels also change, along with the OVGP1 levels in oviduct exosomes also change. More importantly, the addition of FEVs treatment while using 3-MA to inhibit the autophagy level in yak OECs did not change the synthesis and secretion level of OVGP1. Our results indicate that FEVs can affect the synthesis and secretion of OVGP1 by regulating the level of autophagy in OECs, and that the completion of this process may depend on the PI3K/AKT/mTOR pathway, indicating that exosomes and autophagy play important roles in the reproductive physiology of yak OECs. Our results provide new ideas in to characterizing the role of exosomes in yak reproduction.


Subject(s)
Exosomes , Follicular Fluid , Glycoproteins , Animals , Cattle , Female , Epithelial Cells/metabolism , Glycoproteins/metabolism , Oviducts/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...